BILINEAR TRANSFORMATIONS

Conformal Mapping

A function $w = f(z)$ is said to be conformal at z_0 if curve -in the z - plane passing through $z_0 \&$ image curve in w-plane passing $f(z_0)$ preserves the angle in magnitude & sense of rotation (orientation) of angle.

Theorem

Let $f \in H(D)$ i.e, analytic on D & $z_0 \in D$ such that $f'(z_0) \neq 0$. Then f is conformal at z_0 .

Example

 $f(z) = e^z$ is conformal everywhere since e^z is an entire function & $f'(z) = e^z \neq 0$ $\forall z \in \mathbb{C}$.

Critical Point

If f is non constant analytic at $z_0 \& f'(z_0) = 0$, then the conformal character fails at z_0 , such a point z_0 is called a critical point of f. Example

Consider $w = f(z) = \sin z$ since $f(z)$ is entire, so for every $z_0 \in \mathbb{C}$ is a regular point $\Rightarrow z = k\pi$: $k \in \mathbb{Z}$ are critical points of $f(z)$.

Bilinear/ Linear Fractional/ Mobius Transformation

The map

$$
w = \frac{az+b}{cz+d}, \, ad - bc \neq 0 \tag{i}
$$

Where $a, b, c \& d$ are complex constants, is called a linear fractional transformation, or Mobius transformation $&$ equation (i) can also be written as

$$
Azw + bz + cz + D = 0, (AD - BC \neq 0)
$$

and vice versa.

Note

A mobius transformation is simply a composition of one, some or all of the following special types of transformation.

Translation: It is a map of the form $z \mapsto z + \alpha$, $\alpha \in \mathbb{C} \setminus \{0\}$. If $\alpha = 0$ then it is an identity.

Magnification or Contraction: It is a map of the form $z \mapsto rz$, $r \in R - \{0\}$. For $r = 1$, this is the identity map & for $r = 0$ it is a constant map. Case (i) When $r > 1$, then this is a "magnification". Case (ii) When $r < 1$, then this is a contraction map.

Note

If $r < 0$ then $w = rz$ gives the reflection through the origin followed by such a "magnification" or shrinking/contraction depending on $r < -1$ or $-1 < r < 0$.

• Rotation: It is a map of the form $z \mapsto e^{i\theta}\hat{z}$; $\theta \in \mathbb{R}$. This map produces a rotation through an angle about the origin with positive sense, $\theta > 0$.

Note

The rotation coupled with magnification is referred to as Dilation: $z \mapsto az(a \neq 0)$.

• **Inversion**: It is a map of the form $z \mapsto \frac{1}{z}$ $\frac{1}{z}$ which produces a geometric inversion (or reciprocal map or the inversion map.)

Remark

 \triangleq If we let $T(z) = T_{abcd}(z)$ & if $\alpha \in \mathbb{C} \setminus \{0\}$, then αa , αb , αc , αd correspond to the same mobius transformation as

 $T_{abcd}(z) = T_{(a\alpha)(b\alpha)(c\alpha)(d\alpha)}(z)$ i.e., behavior of T does not change when a, b, c, d are multiplied by a non-zero constant.

- **❖** The mobius transformation $T(z)$ is analytic on $C \setminus \{d/c\}$.
- $\mathbf{\hat{v}}$ If $c = 0$ then $T(z) = \frac{az+b}{cz+d}$ $\frac{az+b}{cz+d}$, $ad-bc \neq 0$ reduces to $T(z) = \frac{a}{d}$ $\frac{a}{d}z + \frac{b}{d}$ $\frac{\partial}{\partial t} = \alpha z + \beta (ad \neq 0, \alpha \neq 0)$ & called a linear map.
- ❖ Every mobius transformation $T(z)$,

 $T(z) = \frac{az+b}{z+d}$ $\frac{22+10}{c+d}$, ad – bc $\neq 0$, can be decompose as

$$
T(z) = \left[a\left(z + \frac{d}{c}\right) + b - \frac{ad}{c} \right] \frac{1}{c\left(z + \frac{d}{c}\right)}
$$

$$
= \frac{a}{c} - \left(\frac{ad - bc}{c^2}\right) \frac{1}{\left(z + \frac{d}{c}\right)}, c \neq 0
$$

 \triangleq If $ad - bc = 0$ then $T(z)$ is a constant map

Fixed Point

Let D be a subset of \mathbb{C}_{∞} and $f: D \to \mathbb{C}_{\infty}$. A point $z_0 \in D$ is said to be a fixed point of f if $f(z_0) = z_0$. The set of all fixed points of f is denoted by Fix (f)

Examples

- The function $f(z) = z^2$ has exactly three fixed points, namely, 0,1 and ∞ whereas the function $f(z) = z^{-1}$ has two fixed points namely 1 and -1 .
- The function $f(z) = z 1$ has no fixed points in $\mathbb C$ whereas it has one fixed point in $\mathbb C_{\infty}$, namely the point at ∞
- The function $f(z) = \frac{iz}{|z|}$ $\frac{12}{|z|}$, $z \neq 0$, has no fixed points in $\mathbb{C} \setminus \{0\}$

Note

 \triangleq Every non-constant real-valued continuous function $f: (-1,1) \rightarrow (-1,1)$ has a fixed point in $(-1,1)$. – However, a similar result does not hold for functions $f: Δ$. Δ. For example ϕ_α : Δ → Δ , $|\alpha| = 1$, defined by

$$
\phi_{\alpha}(z) = \frac{z - \alpha}{1 - \bar{\alpha}z}
$$

has no fixed points in Δ.

Proposition

Every Mobius transformation $T: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ has at most two fixed points in \mathbb{C}_{∞} unless $T(z) \equiv z$. Equivalently, if a Mobius transformation leaves three points in \mathbb{C}_{∞} fixed, then it is none other than the identity function.

Corollary

If S and T are two Mobius transformations which agree at three distinct points of \mathbb{C}_{∞} , then $S = T$.

Results

- ❖ Every mobius transformation maps circles and straight lines into circles and straight lines.
- \dots Every Mobius transformation maps circles in \mathbb{C}_{∞} onto circles in \mathbb{C}_{∞} .
- ❖ Under translation, magnification (scaling) & rotation, circles maps to circles & lines to lines.
- ❖ Under the function $w = \frac{1}{x}$ $\frac{1}{z}$, we have
- The image of a line through the origin is a line through the origin.
- The image of a line not through the origin is a circle through the origin.
- The image of a circle through the origin is a line not through the origin.
- The image of a circle not through the origin is a circle not through the origin.

Classification of Bilinear Transformation-on the basis of Normal Form

Let $w = T(z) = \frac{az+b}{cz+d}$ $\frac{dz+ib}{dz+d}$ be a bilinear transformation.

Parabolic: The bilinear transformation with one fixed point is called parabolic i.e., $(a-d)^2 + 4bc =$ 0.

Elliptic: A bilinear transformation with two fixed points i.e., $(a-d)^2 + 4bc \neq 0$ such that $|k| =$ $1, k \neq 1$ is said to be elliptic i.e., in the normal form k is of the form $k = e^{i\alpha}, \alpha \neq 0$.

Hyperbolic: A bilinear transformation with two fixed points i.e., $(a-d)^2 + 4bc \neq 0$ & $k > 0$, $k \in \mathbb{R}$ is termed as hyperbolic.

Loxodromic: A bilinear transformation that is neither hyperbolic, elliptic, nor parabolic is called loxodromic, i.e., it has two fixed points & satisfies the condition $k=\alpha e^{i\alpha}, \alpha\neq 0, \alpha\neq 1.$

Cross Ratio

For the set of three distinct points z_1, z_2, z_3 of \mathbb{C}_{∞} , the expression $\frac{(z-z_1)(z_2-z_3)}{(z-z_1)(z_2-z_3)}$ $\frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} = \frac{(z-z_1)/(z-z_3)}{(z_2-z_1)/(z_2-z_3)}$ $\frac{(2-2i)/(2-2i)}{(z_2-z_1)/(z_2-z_3)}$ is called the cross-ratio of the four points z, z_1, z_2, z_3 & is denoted by (z, z_1, z_2, z_3) .

Symmetric Point/Inverse Point

Let L be a line in $\mathbb C$. Two point $a\&a^*$ in $\mathbb C$ are said to be symmetric with respect to L if L is the perpendicular bisector of $[a, a^*]$ the line segment connecting $a\&a^*$.

Examples:

(i) Two points $z \& z^*$ are symmetric w.r.t. the real axis when $z^* = \overline{z}$. (ii) Two points $z\&z^*$ are symmetric w.r.t. the imaginary axis iff $z^* = -\overline{z}$

Suppose that k is a circle $|z - z_0| = r$ in C. Two points $a \& a^*$ are said to be symmetric w.r.t. circle k (or inverse points w.r.t. the circle k) iff $|a - z_0||a^* - z_0| = r^2$ & Arg $(a - z_0) =$ Arg $(a^* - z_0)$. i.e., $a\&a^*$ on the same ray emanating from the centre z_0 of k, & the product of their distances from the centre of the circle k is equal to the square of the radius of the circle.

MATHSEON