µe MATHSEON COME, CRASH & CONQUER

BILINEAR TRANSFORMATIONS

Conformal Mapping

A function w = f(z) is said to be conformal at z_0 if curve -in the z - plane passing through z_0 image curve in w-plane passing $f(z_0)$ preserves the angle in magnitude & sense of rotation (orientation) of angle.

Theorem

Let $f \in H(D)$ i.e, analytic on $D \& z_0 \in D$ such that $f'(z_0) \neq 0$. Then f is conformal at z_0 .

Example

 $f(z) = e^z$ is conformal everywhere since e^z is an entire function & $f'(z) = e^z \neq 0 \ \forall z \in \mathbb{C}$.

Critical Point

If f is non constant analytic at $z_0 \& f'(z_0) = 0$, then the conformal character fails at z_0 , such a point z_0 is called a critical point of f. Example

Consider $w = f(z) = \sin z$ since f(z) is entire, so for every $z_0 \in \mathbb{C}$ is a regular point $\Rightarrow z = k\pi$: $k \in \mathbb{Z}$ are critical points of f(z).

Bilinear/Linear Fractional/Mobius Transformation

The map

$$w = \frac{az+b}{cz+d}, ad-bc \neq 0$$
 (i)

Where *a*, *b*, *c*&*d* are complex constants, is called a linear fractional transformation, or Mobius transformation & equation (*i*) can also be written as

$$Azw + bz + cz + D = 0, (AD - BC \neq 0)$$

and vice versa.

Note

A mobius transformation is simply a composition of one, some or all of the following special types of transformation.

• **<u>Translation</u>**: It is a map of the form $z \mapsto z + \alpha$, $\alpha \in \mathbb{C} \setminus \{0\}$. If $\alpha = 0$ then it is an identity.

Magnification or Contraction: It is a map of the form z → rz, r ∈ R - {0}. For r = 1, this is the identity map & for r = 0 it is a constant map.
 Case (i) When r > 1, then this is a "magnification".
 Case (ii) When r < 1, then this is a contraction map.

Note

If r < 0 then w = rz gives the reflection through the origin followed by such a "magnification" or shrinking/contraction depending on r < -1 or -1 < r < 0.

• **<u>Rotation</u>**: It is a map of the form $z \mapsto e^{i\theta} \hat{z}; \theta \in \mathbb{R}$. This map produces a rotation through an angle about the origin with positive sense, $\theta > 0$.

Note

The rotation coupled with magnification is referred to as Dilation: $z \mapsto az(a \neq 0)$.

• <u>Inversion</u>: It is a map of the form $z \mapsto \frac{1}{z}$ which produces a geometric inversion (or reciprocal map or the inversion map.)

Remark

★ If we let $T(z) = T_{abcd}(z)$ & if $\alpha \in \mathbb{C} \setminus \{0\}$, then $\alpha a, \alpha b, \alpha c, \alpha d$ correspond to the same mobius transformation as

 $T_{abcd}(z) = T_{(a\alpha)(b\alpha)(c\alpha)(d\alpha)}(z)$

i.e., behavior of *T* does not change when *a*, *b*, *c*, *d* are multiplied by a non-zero constant.

- The mobius transformation T(z) is analytic on $C \setminus \{d/c\}$.
- ♦ If c = 0 then T(z) = $\frac{az+b}{cz+d}$, ad bc ≠ 0 reduces to T(z) = $\frac{a}{d}z + \frac{b}{d} = \alpha z + \beta (ad ≠ 0, α ≠ 0)$ & called a linear map.
- Every mobius transformation T(z),

 $T(z) = \frac{az+b}{c+d}$, $ad - bc \neq 0$, can be decompose as

$$T(z) = \left[a\left(z + \frac{d}{c}\right) + b - \frac{ad}{c}\right] \frac{1}{c\left(z + \frac{d}{c}\right)}$$
$$= \frac{a}{c} - \left(\frac{ad - bc}{c^2}\right) \frac{1}{\left(z + \frac{d}{c}\right)}, c \neq 0$$

• If ad - bc = 0 then T(z) is a constant map

Fixed Point

Let *D* be a subset of \mathbb{C}_{∞} and $f: D \to \mathbb{C}_{\infty}$. A point $z_0 \in D$ is said to be a fixed point of *f* if $f(z_0) = z_0$. The set of all fixed points of *f* is denoted by **Fix** (*f*)

Examples

- The function $f(z) = z^2$ has exactly three fixed points, namely, 0,1 and ∞ whereas the function $f(z) = z^{-1}$ has two fixed points namely 1 and -1.
- The function *f*(*z*) = *z* − 1 has no fixed points in C whereas it has one fixed point in C_∞, namely the point at ∞
- The function $f(z) = \frac{iz}{|z|}, z \neq 0$, has no fixed points in $\mathbb{C} \setminus \{0\}$

Note

★ Every non-constant real-valued continuous function *f*: (-1,1) → (-1,1) has a fixed point in (-1,1). – However, a similar result does not hold for functions *f*: Δ: Δ. For example ϕ_{α} : Δ → Δ, |α| = 1, defined by

$$\phi_{\alpha}(z) = \frac{z - \alpha}{1 - \bar{\alpha}z}$$

has no fixed points in Δ .

Proposition

Every Mobius transformation $T: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ has at most two fixed points in \mathbb{C}_{∞} unless $T(z) \equiv z$. Equivalently, if a Mobius transformation leaves three points in \mathbb{C}_{∞} fixed, then it is none other than the identity function.

Corollary

If *S* and *T* are two Mobius transformations which agree at three distinct points of \mathbb{C}_{∞} , then *S* = *T*.

Results

- Every mobius transformation maps circles and straight lines into circles and straight lines.
- Every Mobius transformation maps circles in \mathbb{C}_{∞} onto circles in \mathbb{C}_{∞} .
- Under translation, magnification (scaling) & rotation, circles maps to circles & lines to lines.
- Under the function $w = \frac{1}{x}$, we have
- The image of a line through the origin is a line through the origin.
- The image of a line not through the origin is a circle through the origin.
- The image of a circle through the origin is a line not through the origin.
- The image of a circle not through the origin is a circle not through the origin.

Classification of Bilinear Transformation-on the basis of Normal Form

Let $w = T(z) = \frac{az+b}{cz+d}$ be a bilinear transformation.

Parabolic: The bilinear transformation with one fixed point is called parabolic i.e., $(a - d)^2 + 4bc = 0$.

<u>Elliptic</u>: A bilinear transformation with two fixed points i.e., $(a - d)^2 + 4bc \neq 0$ such that $|k| = 1, k \neq 1$ is said to be elliptic i.e., in the normal form k is of the form $k = e^{i\alpha}, \alpha \neq 0$.

<u>Hyperbolic</u>: A bilinear transformation with two fixed points i.e., $(a - d)^2 + 4bc \neq 0 \& k > 0, k \in \mathbb{R}$ is termed as hyperbolic.

Loxodromic: A bilinear transformation that is neither hyperbolic, elliptic, nor parabolic is called loxodromic, i.e., it has two fixed points & satisfies the condition $k = \alpha e^{i\alpha}$, $\alpha \neq 0$, $\alpha \neq 1$.

Cross Ratio

For the set of three distinct points z_1, z_2, z_3 of \mathbb{C}_{∞} , the expression $\frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} = \frac{(z-z_1)/(z-z_3)}{(z_2-z_1)/(z_2-z_3)}$ is called the cross-ratio of the four points z, z_1, z_2, z_3 is denoted by (z, z_1, z_2, z_3) .

Symmetric Point/Inverse Point

Let *L* be a line in \mathbb{C} . Two point $a \& a^*$ in \mathbb{C} are said to be symmetric with respect to *L* if *L* is the perpendicular bisector of $[a, a^*]$ the line segment connecting $a \& a^*$.

Examples:

(i) Two points *z*&*z*^{*} are symmetric w.r.t. the real axis when *z*^{*} = *z*̄.
(ii) Two points *z*&*z*^{*} are symmetric w.r.t. the imaginary axis iff *z*^{*} = −*z̄*

Suppose that k is a circle $|z - z_0| = r$ in C. Two points $a\&a^*$ are said to be symmetric w.r.t. circle k (or inverse points w.r.t. the circle k) iff $|a - z_0||a^* - z_0| = r^2\&Arg(a - z_0) = Arg(a^* - z_0)$. i.e., $a\&a^*$ on the same ray emanating from the centre z_0 of k, & the product of their distances from the centre of the circle k is equal to the square of the radius of the circle.

MATHSEON